miércoles, 28 de mayo de 2014

De las matemáticas a la física absurda (2)




Continuaré con un experimento mental que muy probablemente contenga fallos de razonamiento, como de costumbre. Imaginemos un observador puntual que está en caída libre en las cercanías de un agujero negro. Lo de que sea puntual es para poder ignorar alegremente las fuerzas de marea y la inevitable espaguetificación, que resulta un poco desagradable. Pues bien, al ir cayendo obviamente su velocidad va en aumento y llegará un momento en que los efectos de la relatividad especial se tienen que hacer notar. Me refiero a que desde el punto de vista del observador el espacio y el tiempo se van acortando y tendiendo a cero. Desde ese punto de vista sí que podría parecer que se llega a una singularidad, y digo parece, porque no se puede saber si desapareces en una singularidad o en una hostia contra lo que quiera que detenga definitivamente la caída. O sea que este punto de vista tampoco es que ayude mucho. Pero no tiene que ser exactamente así, sino que el propio espacio tiempo se estira tanto el horizonte de sucesos (o dentro) que realmente se produce de alguna manera una indeterminación difícil de aclarar. Es como cuando se estudian los límites y nos encontramos una división entre dos infinitos. Depende de cómo lo calculemos nos podemos encontrar cualquier cosa. O incluso, como veremos en la próxima entrada (otra amenaza), el espacio tiempo se llega a estirar tanto que deje de existir en algún intervalo (sí, ya sé que seguramente esta expresión está mal usada).

Desde el punto de vista de un observador externo al agujero negro (suficientemente alejado, claro) ya se sabe que el tiempo que percibe de caída del objeto es aparentemente infinito (parece que nunca llega a cruzar el horizonte de sucesos), aparte de que la radiación que llega se ve cada vez más debilitada y con la longitud de onda más y más estirada hasta hacerse prácticamente invisible.

En segundo lugar para que un objeto que tenga masa no nula se acelere hasta llegar a la velocidad de la luz se le debe aportar una energía cada vez mayor cuanto más se acerque a esa velocidad. Esa energía tiene que venir del propio campo gravitatorio del agujero negro, mientras que la masa del objeto que cae aumenta cada vez más. Debería llegar un momento que la masa del objeto se haga comparable a la del agujero negro, e incluso se podría argüir que llegaría a hacer sentir sus efectos gravitatorios hacia el propio agujero negro. Entonces, ¿Quién devora a quien? Por cierto, también hay que considerar que la energía también “gravita” y si se transfiere del agujero negro al objeto que cae, ¿no se reduciría momentáneamente la masa del agujero, hasta que llegaran a entrar en contacto? Ummm.

Un segundo escenario es el de un objeto que no cae directamente sino describiendo una trayectoria circular, o más bien en espiral descendente. De nuevo al acercarse al agujero negro la velocidad tiene que aumentar hasta niveles relativistas y la percepción de espacio y tiempo se contrae. Ahora hay muchas consideraciones que nos pueden hacer perdernos. El espacio se contrae en el sentido del movimiento, con lo que parecería que la velocidad angular aumentaría y no la velocidad radial, que es perpendicular al movimiento. Pero todo esto es engañoso. El tiempo se contrae en igual medida, con lo que, como la velocidad es igual al cambio de posición angular por unidad de tiempo, la velocidad angular permanecería igual (los efectos se compensan) y sin embargo al acortarse el tiempo, el movimiento en espiral haría parecer que la velocidad en dirección radial es la que aumenta (hacia dentro, claro). Y eso sin tener en cuenta la fuerza de inercia que nos echaría hacia fuera.

Continuará...

No hay comentarios :